SBML Model Report

Model identifier: "AMPA16_v3"

February 25, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. Table 1 gives an overview of the quantities of all components of this model.

Table 1: The SBML components in this model.
All components are described in more detail in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	19
events	0	constraints	0
reactions	21	function definitions	0
global parameters	25	unit definitions	11
rules	5	initial assignments	0

Model Notes

2 Unit Definitions

This is an overview of eleven unit definitions.

2.1 Unit per_mM_per_msec

Name per_mM_per_msec
Definition $\mathrm{mmol}^{-1} \cdot 1 \cdot \mathrm{~ms}^{-1}$
2.2 Unit per_msec
Name per_msec
Definition ms^{-1}
2.3 Unit pS
Name pS
Definition pS
2.4 Unit mV
Name mV
Definition mV
2.5 Unit pA
Name pA
Definition pA
2.6 Unit percent
Name percent
2.7 Unit substance
Name substance
Definition mol
2.8 Unit volume
Name volume
Definition 1
2.9 Unit area
Name area
Definition m^{2}

2.10 Unit length

Name length
Definition m
2.11 Unit time

Name time

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id | Name | SBO | Spatial
 Dimensions | Size | Unit | Constant |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Outside

3.1 Compartment default

This is a three-dimensional compartment with a constant size of one litre.

4 Species

This model contains 19 species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condition
R0	R0	default	mol	\boxminus	\boxminus
R1	R1	default	mol	\boxminus	\boxminus
R2	R2	default	mol	\boxminus	\boxminus
R3	R3	default	mol	\boxminus	\boxminus
R4	R4	default	mol	\boxminus	\boxminus
Glu	Glu	default	mol	\boxminus	\downarrow
D0	D0	default	mol	\boxminus	\boxminus
D1	D1	default	mol	\boxminus	\boxminus
D2	D2	default	mol	\boxminus	\boxminus
D3	D3	default	mol	\boxminus	\boxminus
D4	D4	default	mol	\boxminus	\boxminus
E2	E2	default	mol	\boxminus	\boxminus
E3	E3	default	mol	\boxminus	\boxminus
E4	E4	default	mol	\boxminus	\boxminus
02	O2	default	mol	\boxminus	\boxminus
03	O3	default	mol	\boxminus	\boxminus
04	O4	default	mol	\boxminus	\boxminus
Vm	Vm	default	mol	\boxminus	\checkmark
LTPampaNbModFactor	LTP_ampaNbModFactor	default	mol	\boxminus	\checkmark

5 Parameters

This model contains 25 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kass_re1			10.000	$\mathrm{mmol}^{-1} \cdot 1 \cdot \mathrm{~ms}^{-1}$	\square
kdiss_re1			7.000	ms^{-1}	\checkmark
kass_re5			10.000	$\mathrm{mmol}^{-1} \cdot 1 \cdot \mathrm{~ms}^{-1}$	\square
kdiss_re5			$4.1 \cdot 10^{-4}$	ms^{-1}	\checkmark
kass_re11			$3.3 \cdot 10^{-6}$	ms^{-1}	\square
kdiss_re11			0.001	ms^{-1}	\square
kass_re12			0.420	ms^{-1}	\checkmark
kdiss_re12			0.017	ms^{-1}	\checkmark
kass_re16			0.550	ms^{-1}	\checkmark
kdiss_re16			0.300	ms^{-1}	\checkmark
kass_re19			0.200	ms^{-1}	\square
kdiss_re19			0.035	ms^{-1}	\square
conduc_02	conductance for state O2		9.000	pS	\checkmark
conduc_03	conductance for state O3		15.000	pS	\checkmark
conduc_04	conductance for state 04		21.000	pS	\checkmark
Erev_AMPA	AMPA reversal potential		0.000	mV	\checkmark
current_AMPA sumOpen	$\begin{aligned} & \text { AMPA current } \\ & \text { sumOpen } \\ & \mathrm{O} 2+\mathrm{O} 3+\mathrm{O} 4 \end{aligned}$		$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	pA dimensionless	$\begin{aligned} & \boxminus \\ & \boxminus \end{aligned}$
PNa	Permeability for Sodium (Na)		50.000		\checkmark
PK	Permeability for Potassium (K)		49.500		\checkmark
PCa	Permeability for Calcium (Ca)		0.500		\checkmark
ICa_AMPA	AMPA mediated current by Ca		0.000	pA	\boxminus
INa_AMPA	AMPA mediated current by Na		0.000	pA	\boxminus
IK_AMPA	AMPA mediated current by K		0.000	pA	\boxminus
nbAMPAR	nbAMPAR		1.000	dimensionless	\checkmark

Id	Name	SBO	Value	Unit	Constant

6 Rules

This is an overview of five rules.

6.1 Rule 1

Rule is an assignment rule for parameter current_AMPA:

$$
\begin{align*}
\text { current_AMPA }= & (\text { conduc_02 } \cdot[02]+\text { conduc_03 } \cdot[03]+\text { conduc_04 } \cdot[04]) \tag{1}\\
& \cdot(\text { Vm }- \text { Erev_AMPA }) \cdot 0.001 \cdot \text { nbAMPAR } \cdot \text { LTP_ampaNbModFactor }
\end{align*}
$$

6.2 Rule 2

Rule is an assignment rule for parameter sumOpen:

$$
\begin{equation*}
\text { sumOpen }=[02]+[03]+[04] \tag{2}
\end{equation*}
$$

6.3 Rule 3

Rule is an assignment rule for parameter INa_AMPA:

$$
\begin{equation*}
\text { INa_AMPA }=\frac{\text { PNa }}{100} \cdot \text { current_AMPA } \tag{3}
\end{equation*}
$$

6.4 Rule 4

Rule is an assignment rule for parameter IK_AMPA:

$$
\begin{equation*}
\text { IK_AMPA }=\frac{P K}{100} \cdot \text { current_AMPA } \tag{4}
\end{equation*}
$$

6.5 Rule 5

Rule is an assignment rule for parameter ICa_AMPA:

$$
\begin{equation*}
\text { ICa_AMPA }=\frac{\text { PCa }}{100} \cdot \text { current_AMPA } \tag{5}
\end{equation*}
$$

7 Reactions

This model contains 21 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by one or more modifiers, the identifiers of the modifier species are written above the reaction arrow.

Table 5: Overview of all reactions

№	Id	Name	Reaction Equation	SBO
1	re1		$\mathrm{RO}+\mathrm{Glu} \rightleftharpoons \mathrm{R} 1$	
2	re2		$\mathrm{R} 1+\mathrm{Glu} \rightleftharpoons \mathrm{R} 2$	
3	re3		$\mathrm{R} 2+\mathrm{Glu} \rightleftharpoons \mathrm{R} 3$	
4	re4		$\mathrm{R} 3+\mathrm{Glu} \rightleftharpoons \mathrm{R} 4$	
5	re5		$\mathrm{D} 0+\mathrm{Glu} \rightleftharpoons \mathrm{D} 1$	
6	re6		$\mathrm{D} 1+\mathrm{Glu} \rightleftharpoons \mathrm{D} 2$	
7	re7		$\mathrm{D} 2+\mathrm{Glu} \rightleftharpoons \mathrm{D} 3$	
8	re8		$\mathrm{D} 3+\mathrm{Glu} \rightleftharpoons \mathrm{D} 4$	
9	re9		$\mathrm{E} 2+\mathrm{Glu} \rightleftharpoons \mathrm{E} 3$	
10	re10		$\mathrm{E} 3+\mathrm{Glu} \rightleftharpoons \mathrm{E} 4$	
11	re11		$\mathrm{R} 0 \rightleftharpoons \mathrm{D} 0$	
12	re12		$\mathrm{R} 1 \rightleftharpoons \mathrm{D} 1$	
13	re13		$\mathrm{R} 2 \rightleftharpoons \mathrm{D} 2$	
14	re14		$\mathrm{R} 3 \rightleftharpoons \mathrm{D} 3$	
15	re15		$\mathrm{R} 4 \rightleftharpoons \mathrm{D} 4$	
16	re16		$\mathrm{R} 2 \rightleftharpoons 02$	
17	re17		$\mathrm{R} 3 \rightleftharpoons 03$	
18	re18		$\mathrm{R} 4 \rightleftharpoons 04$	
19	re19		$\mathrm{D} 2 \rightleftharpoons \mathrm{E} 2$	
20	re20		$\mathrm{D} 3 \rightleftharpoons \mathrm{E} 3$	
21	re21		$\mathrm{D} 4 \rightleftharpoons \mathrm{E} 4$	

7.1 Reaction re1

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 0+\mathrm{Glu} \rightleftharpoons \mathrm{R} 1 \tag{6}
\end{equation*}
$$

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
R0	R0	
Glu	Glu	

Product

Table 7: Properties of each product.

Id	Name	SBO
R1	R1	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{1}=4 \cdot \text { kass_re } 1 \cdot[\mathrm{RO}] \cdot[\mathrm{Glu}]-1 \cdot \text { kdiss_re1 } \cdot[\mathrm{R} 1] \tag{7}
\end{equation*}
$$

7.2 Reaction re2

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 1+\mathrm{Glu} \rightleftharpoons \mathrm{R} 2 \tag{8}
\end{equation*}
$$

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
R1	R1	
Glu	Glu	

Product

Table 9: Properties of each product.

Id	Name	SBO
R2	R2	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{2}=3 \cdot \text { kass_re } 1 \cdot[\mathrm{R} 1] \cdot[\mathrm{Glu}]-2 \cdot \text { kdiss_re } 1 \cdot[\mathrm{R} 2] \tag{9}
\end{equation*}
$$

7.3 Reaction re3

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 2+\mathrm{Glu} \rightleftharpoons \mathrm{R} 3 \tag{10}
\end{equation*}
$$

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
R2	R2	
Glu	Glu	

Product

Table 11: Properties of each product.

Id	Name	SBO
R3	R3	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{3}=2 \cdot \text { kass_re } 1 \cdot[\mathrm{R} 2] \cdot[\mathrm{Glu}]-3 \cdot \text { kdiss_re1 } \cdot[\mathrm{R} 3] \tag{11}
\end{equation*}
$$

7.4 Reaction re4

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 3+\mathrm{Glu} \rightleftharpoons \mathrm{R} 4 \tag{12}
\end{equation*}
$$

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
R3	R3	
Glu	Glu	

Product

Table 13: Properties of each product.

Id	Name	SBO
R4	R4	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{4}=1 \cdot \text { kass_re1 } \cdot[\mathrm{R} 3] \cdot[\mathrm{Glu}]-4 \cdot \text { kdiss_re1 } \cdot[\mathrm{R} 4] \tag{13}
\end{equation*}
$$

7.5 Reaction re5

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{D} 0+\mathrm{Glu} \rightleftharpoons \mathrm{D} 1 \tag{14}
\end{equation*}
$$

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
D0	D0	
Glu	Glu	

Product

Table 15: Properties of each product.

Id	Name	SBO
D1	D1	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{5}=3 \cdot \mathrm{kass} \mathrm{_re5} \cdot[\mathrm{D} 0] \cdot[\mathrm{Glu}]-\mathrm{kdiss} \mathrm{_re5} \cdot[\mathrm{D} 1] \tag{15}
\end{equation*}
$$

7.6 Reaction re6

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{D} 1+\mathrm{Glu} \rightleftharpoons \mathrm{D} 2 \tag{16}
\end{equation*}
$$

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
D1	D1	
Glu	Glu	

Product

Table 17: Properties of each product.

Id	Name	SBO
D2	D2	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{6}=3 \cdot \text { kass_re } 1 \cdot[\mathrm{D} 1] \cdot[\mathrm{Glu}]-\text { kdiss_re1 } \cdot[\mathrm{D} 2] \tag{17}
\end{equation*}
$$

7.7 Reaction re7

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{D} 2+\mathrm{Glu} \rightleftharpoons \mathrm{D} 3 \tag{18}
\end{equation*}
$$

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
D2	D2	
Glu	Glu	

Product

Table 19: Properties of each product.

Id	Name	SBO
D3	D3	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{7}=2 \cdot \text { kass_re } 1 \cdot[\mathrm{D} 2] \cdot[\mathrm{Glu}]-2 \cdot \mathrm{kdiss} \mathrm{_re} 1 \cdot[\mathrm{D} 3] \tag{19}
\end{equation*}
$$

7.8 Reaction re8

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{D} 3+\mathrm{Glu} \rightleftharpoons \mathrm{D} 4 \tag{20}
\end{equation*}
$$

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
D3	D3	
Glu	Glu	

Product

Table 21: Properties of each product.

Id	Name	SBO
D4	D4	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{8}=1 \cdot \text { kass_re1 } \cdot[\mathrm{D} 3] \cdot[\mathrm{Glu}]-3 \cdot \mathrm{kdiss} _ \text {re1 } \cdot[\mathrm{D} 4] \tag{21}
\end{equation*}
$$

7.9 Reaction re9

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{E} 2+\mathrm{Glu} \rightleftharpoons \mathrm{E} 3 \tag{22}
\end{equation*}
$$

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
E2	E2	
Glu	Glu	

Product

Table 23: Properties of each product.

Id	Name	SBO
E3	E3	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{9}=2 \cdot \mathrm{kass} \mathrm{_re1} \mathrm{\cdot[E2]} \mathrm{\cdot[Glu]-kdiss} \mathrm{_re1} \mathrm{\cdot[E3]} \tag{23}
\end{equation*}
$$

7.10 Reaction re10

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{E} 3+\mathrm{Glu} \rightleftharpoons \mathrm{E} 4 \tag{24}
\end{equation*}
$$

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
E3	E3	
Glu	Glu	

Product

Table 25: Properties of each product.
Id Name SBO

E4 E4

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{10}=\text { kass_re } 1 \cdot[\mathrm{E} 3] \cdot[\mathrm{Glu}]-2 \cdot \mathrm{kdiss} \mathrm{_re} 1 \cdot[\mathrm{E} 4] \tag{25}
\end{equation*}
$$

7.11 Reaction re11

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{RO} \rightleftharpoons \mathrm{D} 0 \tag{26}
\end{equation*}
$$

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
R0	R0	

Product

Table 27: Properties of each product.

Id	Name	SBO
D0	D0	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{11}=4 \cdot \text { kass_re11 } \cdot[\mathrm{RO} 0]-\text { kdiss_re11 } \cdot[\mathrm{D} 0] \tag{27}
\end{equation*}
$$

7.12 Reaction re12

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 1 \rightleftharpoons \mathrm{D} 1 \tag{28}
\end{equation*}
$$

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
R1	R1	

Product

Table 29: Properties of each product.

Id	Name	SBO
D1	D1	

Kinetic Law
Derived unit contains undeclared units

$$
\begin{equation*}
v_{12}=1 \cdot \text { kass_re12 } \cdot[\mathrm{R} 1]-\mathrm{kdiss} \mathrm{_re12} \cdot[\mathrm{D} 1] \tag{29}
\end{equation*}
$$

7.13 Reaction re13

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 2 \rightleftharpoons \mathrm{D} 2 \tag{30}
\end{equation*}
$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
R2	R2	

Product

Table 31: Properties of each product.

Id	Name	SBO
D2	D2	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{13}=2 \cdot \text { kass_re } 12 \cdot[\mathrm{R} 2]-\text { kdiss_re } 12 \cdot[\mathrm{D} 2] \tag{31}
\end{equation*}
$$

7.14 Reaction re14

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 3 \rightleftharpoons \mathrm{D} 3 \tag{32}
\end{equation*}
$$

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
R3	R3	

Product

Table 33: Properties of each product.

Id	Name	SBO
D3	D3	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{14}=3 \cdot \text { kass_re12 } \cdot[\mathrm{R} 3]-\text { kdiss_re12 } \cdot[\mathrm{D} 3] \tag{33}
\end{equation*}
$$

7.15 Reaction re15

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 4 \rightleftharpoons \mathrm{D} 4 \tag{34}
\end{equation*}
$$

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
R4	R4	

Product

Table 35: Properties of each product.

Id	Name	SBO
D4	D4	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{15}=4 \cdot \text { kass_re12 } \cdot[\mathrm{R} 4]-\text { kdiss_re12 } \cdot[\mathrm{D} 4] \tag{35}
\end{equation*}
$$

7.16 Reaction re16

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 2 \rightleftharpoons 02 \tag{36}
\end{equation*}
$$

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
R2	R2	

Product

Table 37: Properties of each product.

Id	Name	SBO
02	O2	

Kinetic Law
Derived unit contains undeclared units

$$
\begin{equation*}
v_{16}=2 \cdot \text { kass_re16 } \cdot[\mathrm{R} 2]-\text { kdiss_re16 } \cdot[02] \tag{37}
\end{equation*}
$$

7.17 Reaction re17

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 3 \rightleftharpoons 03 \tag{38}
\end{equation*}
$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
R3	R3	

Product

Table 39: Properties of each product.

Id	Name	SBO
03	O3	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{17}=3 \cdot \text { kass_re16 } \cdot[\mathrm{R} 3]-\text { kdiss_re16 } \cdot[03] \tag{39}
\end{equation*}
$$

7.18 Reaction re18

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{R} 4 \rightleftharpoons 04 \tag{40}
\end{equation*}
$$

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
R4	R4	

Product

Table 41: Properties of each product.

Id	Name	SBO
04	O4	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{18}=4 \cdot \text { kass_re16 } \cdot[\mathrm{R} 4]-\text { kdiss_re16 } \cdot[04] \tag{41}
\end{equation*}
$$

7.19 Reaction re19

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{D} 2 \rightleftharpoons \mathrm{E} 2 \tag{42}
\end{equation*}
$$

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
D2	D2	

Product

Table 43: Properties of each product.

Id	Name	SBO
E2	E2	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{19}=1 \cdot \text { kass_re19 } \cdot[\mathrm{D} 2]-\mathrm{kdiss} \mathrm{_re19} \cdot[\mathrm{E} 2] \tag{43}
\end{equation*}
$$

7.20 Reaction re20

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{D} 3 \rightleftharpoons \mathrm{E} 3 \tag{44}
\end{equation*}
$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
D3	D3	

Product

Table 45: Properties of each product.

Id	Name	SBO
E3	E3	

Kinetic Law
Derived unit contains undeclared units

$$
\begin{equation*}
v_{20}=2 \cdot \text { kass_re19 } \cdot[\mathrm{D} 3]-\text { kdiss_re19 } \cdot[\mathrm{E} 3] \tag{45}
\end{equation*}
$$

7.21 Reaction re21

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$
\begin{equation*}
\mathrm{D} 4 \rightleftharpoons \mathrm{E} 4 \tag{46}
\end{equation*}
$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
D4	D4	

Product

Table 47: Properties of each product.

Id	Name	SBO
E4	E 4	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{21}=3 \cdot \text { kass_re19 } \cdot[\mathrm{D} 4]-\text { kdiss_re19 } \cdot[\mathrm{E} 4] \tag{47}
\end{equation*}
$$

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without a unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions >0 for certain species.

8.1 Species R0

Name R0
Initial amount 1 mol
Charge 0
This species takes part in two reactions (as a reactant in re1, re11).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{R} 0=-v_{1}-v_{11} \tag{48}
\end{equation*}
$$

8.2 Species R1

Name R1
Initial amount 0 mol
Charge 0
This species takes part in three reactions (as a reactant in re2, re12 and as a product in re1).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{R} 1=v_{1}-v_{2}-v_{12} \tag{49}
\end{equation*}
$$

8.3 Species R2

Name R2
Initial amount 0 mol
Charge 0
This species takes part in four reactions (as a reactant in re3, re13, re16 and as a product in re2).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{R} 2=v_{2}-v_{3}-v_{13}-v_{16} \tag{50}
\end{equation*}
$$

8.4 Species R3

Name R3
Initial amount 0 mol
Charge 0
This species takes part in four reactions (as a reactant in re4, re14, re17 and as a product in re3).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{R} 3=v_{3}-v_{4}-v_{14}-v_{17} \tag{51}
\end{equation*}
$$

8.5 Species R4

Name R4

Initial amount 0 mol
Charge 0
This species takes part in three reactions (as a reactant in re15, re18 and as a product in re4).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{R} 4=v_{4}-v_{15}-v_{18} \tag{52}
\end{equation*}
$$

8.6 Species Glu

Name Glu
Initial amount 0 mol

Charge 0

This species takes part in ten reactions (as a reactant in re1, re2, re3, re4, re5, re6, re7, re8, re9, re10), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{Glu}=0 \tag{53}
\end{equation*}
$$

8.7 Species D0

Name D0
Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re5 and as a product in re11).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{D} 0=v_{11}-v_{5} \tag{54}
\end{equation*}
$$

8.8 Species D1

Name D1

Initial amount 0 mol

Charge 0

This species takes part in three reactions (as a reactant in re6 and as a product in re5, re12).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{D} 1=v_{5}+v_{12}-v_{6} \tag{55}
\end{equation*}
$$

8.9 Species D2

Name D2
Initial amount 0 mol
Charge 0
This species takes part in four reactions (as a reactant in re7, re19 and as a product in re6, re13).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{D} 2=v_{6}+v_{13}-v_{7}-v_{19} \tag{56}
\end{equation*}
$$

8.10 Species D3

Name D3
Initial amount 0 mol

Charge 0

This species takes part in four reactions (as a reactant in re8, re20 and as a product in re7, re14).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{D} 3=v_{7}+v_{14}-v_{8}-v_{20} \tag{57}
\end{equation*}
$$

8.11 Species D4

Name D4
Initial amount 0 mol
Charge 0
This species takes part in three reactions (as a reactant in re21 and as a product in re8, re15).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{D} 4=v_{8}+v_{15}-v_{21} \tag{58}
\end{equation*}
$$

8.12 Species E2

Name E2
Initial amount 0 mol
Charge 0
This species takes part in two reactions (as a reactant in re9 and as a product in re19).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{E} 2=v_{19}-v_{9} \tag{59}
\end{equation*}
$$

8.13 Species E3

Name E3
Initial amount 0 mol
Charge 0
This species takes part in three reactions (as a reactant in re10 and as a product in re9, re20).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{E} 3=v_{9}+v_{20}-v_{10} \tag{60}
\end{equation*}
$$

8.14 Species E4

Name E4
Initial amount 0 mol
Charge 0
This species takes part in two reactions (as a product in re10, re21).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{E} 4=v_{10}+v_{21} \tag{61}
\end{equation*}
$$

8.15 Species 02

Name O2
Initial amount 0 mol
Charge 0
This species takes part in one reaction (as a product in re16).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} 02=v_{16} \tag{62}
\end{equation*}
$$

8.16 Species 03

Name O3
Initial amount 0 mol
Charge 0
This species takes part in one reaction (as a product in re17).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} 03=v_{17} \tag{63}
\end{equation*}
$$

8.17 Species 04

Name O4
Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re18).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} 04=v_{18} \tag{64}
\end{equation*}
$$

8.18 Species Vm

Name Vm
Initial amount -60 mol

Charge 0

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{Vm}=0 \tag{65}
\end{equation*}
$$

8.19 Species LTP_ampaNbModFactor

Name LTP_ampaNbModFactor
Initial amount 1 mol
Charge 0

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \text { LTP_ampaNbModFactor }=0 \tag{66}
\end{equation*}
$$

References

Dräger, A., Planatscher, H., Wouamba, D. M., Schröder, A., Hucka, M., Endler, L., Golebiewski, M., Müller, W., and Zell, A. (2009). SBML2LETEX: Conversion of SBML files into humanreadable reports. Bioinformatics, 25(11), 1455-1456. 10.1093/bioinformatics/btp170.

