SBML Model Report

Model identifier: "AMPA16_v3"

February 25, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. Table 1 gives an overview of the quantities of all components of this model.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	19
events	0	constraints	0
reactions	21	function definitions	0
global parameters	25	unit definitions	11
rules	5	initial assignments	0

 Table 1: The SBML components in this model.

 All components are described in more detail in the following sections.

Model Notes

2 Unit Definitions

This is an overview of eleven unit definitions.

2.1 Unit per_mM_per_msec

Name per_mM_per_msec

Definition $mmol^{-1} \cdot l \cdot ms^{-1}$

2.2 Unit per_msec

Name per_msec

 $\textbf{Definition}\ ms^{-1}$

$2.3~Unit~{\rm pS}$

Name pS

Definition pS

2.4 Unit mV

Name mV

 $\textbf{Definition} \ mV$

2.5 Unit pA

Name pA

Definition pA

2.6 Unit percent

Name percent

2.7 Unit substance

Name substance

Definition mol

2.8 Unit volume

Name volume

Definition 1

2.9 Unit area

Name area

 $\text{Definition} \ m^2$

2.10 Unit length

Name length

Definition m

2.11 Unit time

Name time

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.							
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
default			3	1	litre		

3.1 Compartment default

This is a three-dimensional compartment with a constant size of one litre.

[▶] 4 Species

This model contains 19 species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

	Та	ble 3: Properties of each species.			
Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
RO	R0	default	mol		
R1	R1	default	mol		
R2	R2	default	mol		
R3	R3	default	mol		
R4	R4	default	mol		
Glu	Glu	default	mol		
DO	D0	default	mol		
D1	D1	default	mol		
D2	D2	default	mol		
D3	D3	default	mol		
D4	D4	default	mol		
E2	E2	default	mol		
E3	E3	default	mol		
E4	E4	default	mol		
02	O2	default	mol		
03	03	default	mol		
04	O4	default	mol		
Vm	Vm	default	mol		
LTP-	LTP_ampaNbModFactor	default	mol		$\overline{\mathbf{Z}}$
_ampaNbModFa	ctor				

5 Parameters

This model contains 25 global parameters.

Id	Name	SBO	Value	Unit	Constant
kass_re1			10.000	$\text{mmol}^{-1} \cdot \mathbf{l} \cdot \text{ms}^{-1}$	
kdiss_re1			7.000	ms^{-1}	
kass_re5			10.000	$\mathrm{mmol}^{-1} \cdot \mathrm{l} \cdot \mathrm{ms}^{-1}$	
kdiss_re5			$4.1 \cdot 10^{-4}$	ms^{-1}	$\overline{\checkmark}$
kass_re11			$3.3\cdot10^{-6}$	ms^{-1}	$\overline{\checkmark}$
kdiss_re11			0.001	ms^{-1}	
kass_re12			0.420	ms^{-1}	
kdiss_re12			0.017	ms^{-1}	
kass_re16			0.550	ms^{-1}	
kdiss_re16			0.300	ms^{-1}	$\overline{\checkmark}$
kass_re19			0.200	ms^{-1}	
kdiss_re19			0.035	ms^{-1}	
conduc_02	conductance for state O2		9.000	pS	
conduc_03	conductance for state O3		15.000	pS	
conduc_04	conductance for state 04		21.000	pS	
Erev_AMPA	AMPA reversal po- tential		0.000	mV	
current_AMPA	AMPA current		0.000	pА	
sumOpen	sumOpen = O2+O3+O4		0.000	dimensionless	
PNa	Permeability for Sodium (Na)		50.000		
РК	Permeability for Potassium (K)		49.500		
PCa	Permeability for Calcium (Ca)		0.500		
ICa_AMPA	AMPA mediated current by Ca		0.000	pA	
INa_AMPA	AMPA mediated current by Na		0.000	pA	
IK_AMPA	AMPA mediated current by K		0.000	pA	
nbAMPAR	nbAMPAR		1.000	dimensionless	

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant

6 Rules

This is an overview of five rules.

6.1 Rule 1

Rule is an assignment rule for parameter current_AMPA:

$$\begin{aligned} \texttt{current_AMPA} &= (\texttt{conduc_02} \cdot [\texttt{02}] + \texttt{conduc_03} \cdot [\texttt{03}] + \texttt{conduc_04} \cdot [\texttt{04}]) \\ & \cdot (\texttt{Vm} - \texttt{Erev_AMPA}) \cdot 0.001 \cdot \texttt{nbAMPAR} \cdot \texttt{LTP_ampaNbModFactor} \end{aligned} \tag{1}$$

6.2 Rule 2

Rule is an assignment rule for parameter sumOpen:

$$sumOpen = [02] + [03] + [04]$$
 (2)

6.3 Rule 3

Rule is an assignment rule for parameter INa_AMPA:

$$INa_AMPA = \frac{PNa}{100} \cdot current_AMPA$$
(3)

6.4 Rule 4

Rule is an assignment rule for parameter IK_AMPA:

$$IK_AMPA = \frac{PK}{100} \cdot current_AMPA$$
(4)

6.5 Rule 5

Rule is an assignment rule for parameter ICa_AMPA:

$$ICa_AMPA = \frac{PCa}{100} \cdot current_AMPA$$
(5)

7 Reactions

This model contains 21 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by one or more modifiers, the identifiers of the modifier species are written above the reaction arrow.

N⁰	Id	Name	Reaction Equation	SBO
1	re1		$RO + Glu \rightleftharpoons R1$	
2	re2		$R1 + Glu \Longrightarrow R2$	
3	re3		$R2 + Glu \Longrightarrow R3$	
4	re4		$R3 + Glu \Longrightarrow R4$	
5	re5		$DO + Glu \Longrightarrow D1$	
6	re6		$D1 + Glu \Longrightarrow D2$	
7	re7		$D2 + Glu \Longrightarrow D3$	
8	re8		$D3 + Glu \Longrightarrow D4$	
9	re9		$E2 + Glu \Longrightarrow E3$	
10	re10		$E3 + Glu \Longrightarrow E4$	
11	re11		$RO \Longrightarrow DO$	
12	re12		$R1 \rightleftharpoons D1$	
13	re13		$R2 \Longrightarrow D2$	
14	re14		$R3 \Longrightarrow D3$	
15	re15		$R4 \rightleftharpoons D4$	
16	re16		$R2 \rightleftharpoons 02$	
17	re17		R3 💳 03	
18	re18		R4 ==== 04	
19	re19		$D2 \rightleftharpoons E2$	
20	re20		$D3 \rightleftharpoons E3$	
21	re21		$D4 \rightleftharpoons E4$	

Table 5: Overview of all reactions

7.1 Reaction re1

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$R0 + Glu \rightleftharpoons R1$$
 (6)

Reactants

Table	6: Prop	erties of	each re	actant.
	Id	Name	SBO	
	RO	R0		-
	Glu	Glu		

Product

Table 7: Properties of each product.					
	Id	Name	SBO		
	R1	R1			

Kinetic Law

Derived unit contains undeclared units

$$v_1 = 4 \cdot \texttt{kass_re1} \cdot [\texttt{R0}] \cdot [\texttt{Glu}] - 1 \cdot \texttt{kdiss_re1} \cdot [\texttt{R1}]$$
(7)

7.2 Reaction re2

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$R1 + Glu \Longrightarrow R2$$
 (8)

Reactants

Produced by SBML2LATEX

Table 8: Properties of each reactant.

Id	Name	SBO
R1	R 1	
Glu	Glu	

Product

Table 9: Properties of each product.				
	Id	Name	SBO	
	R2	R2		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = 3 \cdot \texttt{kass_re1} \cdot [\texttt{R1}] \cdot [\texttt{Glu}] - 2 \cdot \texttt{kdiss_re1} \cdot [\texttt{R2}]$$
(9)

7.3 Reaction re3

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$R2 + Glu \Longrightarrow R3$$
 (10)

Reactants

Table 10: Properties of each reactant.					
	Id	Name	SBO		
	R2	R2			
	Glu	Glu			

Product

Table 11: Properties of each product.

Id	Name	SBO
R3	R3	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = 2 \cdot \texttt{kass_re1} \cdot [\texttt{R2}] \cdot [\texttt{Glu}] - 3 \cdot \texttt{kdiss_re1} \cdot [\texttt{R3}]$$
(11)

7.4 Reaction re4

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$R3 + Glu \Longrightarrow R4$$
 (12)

Reactants

Table 1	2: Proj	perties of	each re	eactant.
	Id	Name	SBO	
	R3	R3		
	Glu	Glu		

Product

Table 1	3: Pro	operties c	of each p	product.
	Id	Name	SBO	
	R4	R4		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = 1 \cdot \texttt{kass_re1} \cdot [\texttt{R3}] \cdot [\texttt{Glu}] - 4 \cdot \texttt{kdiss_re1} \cdot [\texttt{R4}]$$
(13)

7.5 Reaction re5

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$DO + Glu \Longrightarrow D1$$
 (14)

Reactants

Table 1	4: Proj	perties of	f each re	eactant.
	Id	Name	SBO	
	DO	D0		-
	Glu	Glu		_

Product

Table 15: Properties of each product.						
	Id	Name	SBO			
	D1	D1				

Kinetic Law

Derived unit contains undeclared units

$$v_5 = 3 \cdot \texttt{kass_re5} \cdot [\texttt{D0}] \cdot [\texttt{Glu}] - \texttt{kdiss_re5} \cdot [\texttt{D1}]$$
(15)

7.6 Reaction re6

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$D1 + Glu \Longrightarrow D2$$
 (16)

Reactants

Produced by SBML2ATEX

Table 16: Properties of each reactant.

Id	Name	SBO
D1	D1	
Glu	Glu	

Product

Table 1	7: Pro	perties c	of each produce	ct.
	Id	Name	SBO	
	D2	D2		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = 3 \cdot \text{kass_re1} \cdot [D1] \cdot [Glu] - \text{kdiss_re1} \cdot [D2]$$
(17)

7.7 Reaction re7

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$D2 + Glu \Longrightarrow D3$$
 (18)

Reactants

Table 1	8: Proj	perties of	each reactant.
	Id	Name	SBO
	D2	D2	
	Glu	Glu	

Product

Table 19: Properties of each product.

Id	Name	SBO
D3	D3	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = 2 \cdot \texttt{kass_re1} \cdot [\texttt{D2}] \cdot [\texttt{Glu}] - 2 \cdot \texttt{kdiss_re1} \cdot [\texttt{D3}]$$
(19)

7.8 Reaction re8

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$D3 + Glu \Longrightarrow D4$$
 (20)

Reactants

Table 20: Properties of each reactant.					
	Id	Name	SBO		
	D3	D3			
	Glu	Glu			

Product

Table 21: Properties of each product.					
	Id	Name	SBO		
	D4	D4			

Kinetic Law

Derived unit contains undeclared units

$$v_8 = 1 \cdot \texttt{kass_re1} \cdot [\texttt{D3}] \cdot [\texttt{Glu}] - 3 \cdot \texttt{kdiss_re1} \cdot [\texttt{D4}]$$
(21)

Produced by SBML2ATEX

7.9 Reaction re9

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$E2 + Glu \Longrightarrow E3$$
 (22)

Reactants

Table 2	2: Proj	perties of	f each re	eactant.
	Id	Name	SBO	
	E2	E2		
	Glu	Glu		

Product

Table 23: Properties of each product.						
	Id	Name	SBO			
	E3	E3				

Kinetic Law

Derived unit contains undeclared units

$$v_9 = 2 \cdot \texttt{kass_re1} \cdot [\texttt{E2}] \cdot [\texttt{Glu}] - \texttt{kdiss_re1} \cdot [\texttt{E3}]$$
(23)

7.10 Reaction re10

This is a reversible reaction of two reactants forming one product.

Notes

Reaction equation

$$E3 + Glu \Longrightarrow E4 \tag{24}$$

Reactants

Produced by SBML2ATEX

Table 24: Properties of each reactant.

Id	Name	SBO
E3	E3	
Glu	Glu	

Product

Table 2	5: Pro	perties c	of each produ	uct.
	Id	Name	SBO	
	E4	E4		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{kass_re1} \cdot [\text{E3}] \cdot [\text{Glu}] - 2 \cdot \text{kdiss_re1} \cdot [\text{E4}]$$
(25)

7.11 Reaction re11

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$R0 \Longrightarrow D0$$
 (26)

Reactant

Table 20	6: Prc	perties o	f each r	eactant.
	Id	Name	SBO	
	RO	R0		

Product

Table 27: Properties of each product.

Id	Name	SBO
DO	D0	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = 4 \cdot \texttt{kass_re11} \cdot [\texttt{R0}] - \texttt{kdiss_re11} \cdot [\texttt{D0}]$$
(27)

7.12 Reaction re12

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$R1 \Longrightarrow D1$$
 (28)

Reactant

Table 2	8: Pro	perties o	f each r	eactant.
	Id	Name	SBO	
	R1	R1		

Product

Table 29: Properties of each product.					
	Id	Name	SBO		
	D1	D1			

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = 1 \cdot \texttt{kass_re12} \cdot [\texttt{R1}] - \texttt{kdiss_re12} \cdot [\texttt{D1}]$$
(29)

7.13 Reaction re13

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$R2 \Longrightarrow D2$$
 (30)

Reactant

Table 3	0: Pro	perties o	f each r	eactant.
	Id	Name	SBO	
	R2	R2		

Product

Table 3	1: Pro	operties o	of each p	product.
	Id	Name	SBO	
	D2	D2		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = 2 \cdot \texttt{kass_re12} \cdot [\texttt{R2}] - \texttt{kdiss_re12} \cdot [\texttt{D2}]$$
(31)

7.14 Reaction re14

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$R3 \Longrightarrow D3 \tag{32}$$

Reactant

Produced by SBML2ATEX

Table 32: Properties of each reactant.

Id	Name	SBO
R3	R3	

Product

Table 33: Properties of each product.					
	Id	Name	SBO		
	D3	D3			

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = 3 \cdot \texttt{kass_re12} \cdot [\texttt{R3}] - \texttt{kdiss_re12} \cdot [\texttt{D3}]$$
(33)

7.15 Reaction re15

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$R4 \Longrightarrow D4$$
 (34)

Reactant

Table 34	4: Pro	perties o	f each r	eactant.
	Id	Name	SBO	
	R4	R4		-

Product

Table 35: Properties of each product.

Id	Name	SBO
D4	D4	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = 4 \cdot \texttt{kass_re12} \cdot [\texttt{R4}] - \texttt{kdiss_re12} \cdot [\texttt{D4}]$$
(35)

7.16 Reaction re16

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$R2 \rightleftharpoons 02$$
 (36)

Reactant

Table 3	6: Pro	perties o	f each r	eactant.
	Id	Name	SBO	
	R2	R2		

Product

Table 37: Properties of each product.						
	Id	Name	SBO			
	02	O2				

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = 2 \cdot \texttt{kass_re16} \cdot [\texttt{R2}] - \texttt{kdiss_re16} \cdot [\texttt{D2}]$$
(37)

Produced by SBML2LATEX

7.17 Reaction re17

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$R3 \rightleftharpoons 03$$
 (38)

Reactant

Table 3	8: Prc	perties o	f each r	eactant.
	Id	Name	SBO	
	R3	R3		

Product

Table 3	9: Pro	operties o	of each p	product.
	Id	Name	SBO	
	03	03		

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = 3 \cdot \texttt{kass_re16} \cdot [\texttt{R3}] - \texttt{kdiss_re16} \cdot [\texttt{O3}]$$
(39)

7.18 Reaction re18

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$R4 \Longrightarrow 04 \tag{40}$$

Reactant

Produced by SBML2ATEX

Table 40: Properties of each reactant.

Id	Name	SBO
R4	R4	

Product

Table 41: Properties of each product.						
	Id	Name	SBO			
	04	O4				

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = 4 \cdot \texttt{kass_re16} \cdot [\texttt{R4}] - \texttt{kdiss_re16} \cdot [\texttt{04}]$$
(41)

7.19 Reaction re19

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$D2 \rightleftharpoons E2$$
 (42)

Reactant

Table 42	2: Pro	perties o	f each r	eactant.
	Id	Name	SBO	
	D2	D2		-

Product

Table 43: Properties of each product.

Id	Name	SBO
E2	E2	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = 1 \cdot \texttt{kass_re19} \cdot [\texttt{D2}] - \texttt{kdiss_re19} \cdot [\texttt{E2}]$$
(43)

7.20 Reaction re20

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$D3 \rightleftharpoons E3$$
 (44)

Reactant

Table 4	4: Pro	perties o	f each r	eactant.
	Id	Name	SBO	-
	D3	D3		-

Product

Table 45: Properties of each product.						
	Id	Name	SBO			
	E3	E3				

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = 2 \cdot \texttt{kass_re19} \cdot [\texttt{D3}] - \texttt{kdiss_re19} \cdot [\texttt{E3}]$$
(45)

7.21 Reaction re21

This is a reversible reaction of one reactant forming one product.

Notes

Reaction equation

$$D4 \rightleftharpoons E4$$
 (46)

Reactant

Table 4	6: Prc	perties o	f each r	eactant.
	Id	Name	SBO	
	D4	D4		

Product

 Table 47: Properties of each product.

 Id
 Name
 SBO

 E4
 E4

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = 3 \cdot \texttt{kass_re19} \cdot [\texttt{D4}] - \texttt{kdiss_re19} \cdot [\texttt{E4}]$$
(47)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without a unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species R0

Name R0

Initial amount 1 mol

Charge 0

This species takes part in two reactions (as a reactant in re1, re11).

$$\frac{d}{dt}RO = -v_1 - v_{11}$$
(48)

8.2 Species R1

Name R1

Initial amount 0 mol

Charge 0

This species takes part in three reactions (as a reactant in re2, re12 and as a product in re1).

$$\frac{d}{dt}R1 = v_1 - v_2 - v_{12}$$
(49)

8.3 Species R2

Name R2

Initial amount 0 mol

Charge 0

This species takes part in four reactions (as a reactant in re3, re13, re16 and as a product in re2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{R}2 = v_2 - v_3 - v_{13} - v_{16} \tag{50}$$

8.4 Species R3

Name R3

Initial amount 0 mol

Charge 0

This species takes part in four reactions (as a reactant in re4, re14, re17 and as a product in re3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{R3} = v_3 - v_4 - v_{14} - v_{17} \tag{51}$$

8.5 Species R4

Name R4

Initial amount 0 mol

Charge 0

This species takes part in three reactions (as a reactant in re15, re18 and as a product in re4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{R4} = v_4 - v_{15} - v_{18} \tag{52}$$

8.6 Species Glu

Name Glu

Initial amount 0 mol

Charge 0

This species takes part in ten reactions (as a reactant in re1, re2, re3, re4, re5, re6, re7, re8, re9, re10), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glu} = 0 \tag{53}$$

8.7 Species D0

Name D0

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re5 and as a product in re11).

$$\frac{d}{dt}D0 = v_{11} - v_5$$
(54)

8.8 Species D1

Name D1

Initial amount 0 mol

Charge 0

This species takes part in three reactions (as a reactant in re6 and as a product in re5, re12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{D1} = v_5 + v_{12} - v_6 \tag{55}$$

25

8.9 Species D2

Name D2

Initial amount 0 mol

Charge 0

This species takes part in four reactions (as a reactant in re7, re19 and as a product in re6, re13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{D2} = v_6 + v_{13} - v_7 - v_{19} \tag{56}$$

8.10 Species D3

Name D3

Initial amount 0 mol

Charge 0

This species takes part in four reactions (as a reactant in re8, re20 and as a product in re7, re14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{D3} = v_7 + v_{14} - v_8 - v_{20} \tag{57}$$

8.11 Species D4

Name D4

Initial amount 0 mol

Charge 0

This species takes part in three reactions (as a reactant in re21 and as a product in re8, re15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{D4} = v_8 + v_{15} - v_{21} \tag{58}$$

8.12 Species E2

Name E2

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re9 and as a product in re19).

$$\frac{d}{dt}E2 = v_{19} - v_9 \tag{59}$$

Produced by SBML2ATEX

8.13 Species E3

Name E3

Initial amount 0 mol

Charge 0

This species takes part in three reactions (as a reactant in re10 and as a product in re9, re20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E3} = v_9 + v_{20} - v_{10} \tag{60}$$

8.14 Species E4

Name E4

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a product in re10, re21).

$$\frac{d}{dt}E4 = v_{10} + v_{21} \tag{61}$$

8.15 Species 02

Name O2

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{0}\mathbf{2} = \mathbf{v}_{16} \tag{62}$$

8.16 Species 03

Name O3

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{03} = v_{17} \tag{63}$$

27

8.17 Species 04

Name O4

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{04} = v_{18} \tag{64}$$

8.18 Species Vm

Name Vm

Initial amount -60 mol

Charge 0

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathsf{V}\mathsf{m} = 0 \tag{65}$$

8.19 Species LTP_ampaNbModFactor

Name LTP_ampaNbModFactor

Initial amount 1 mol

Charge 0

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathtt{LTP}_{\mathtt{ampaNbModFactor}} = 0 \tag{66}$$

References

Dräger, A., Planatscher, H., Wouamba, D. M., Schröder, A., Hucka, M., Endler, L., Golebiewski, M., Müller, W., and Zell, A. (2009). SBML2IATEX: Conversion of SBML files into human-readable reports. Bioinformatics, 25(11), 1455–1456. 10.1093/bioinformatics/btp170.